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Minimal unitary models and the closedSU (2)q invariant
spin chain
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Zagreb, Croatia
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Abstract. We consider the Hamiltonian of the closedSU(2)q invariant chain. We project a
particular class of statistical models belonging to the unitary minimal series. A particular model
corresponds to a particular value of the coupling constant. The operator content is derived. This
class of models has charge-dependent boundary conditions. In simple cases (Ising, three-state
Potts) corresponding Hamiltonians are constructed. These are non-local as the original spin
chain.

1. Introduction

Quantum groups together with the Temperly–Lieb algebra play a particular role in integrable
spin chains [1]. However, it may be interesting to study particular Hamiltonians which
are invariant to the quantum group [1–5]. The quantum group invariant Hamiltonian for
the closed spin chain was constructed by Martin and Rittenberg [6]. This model was
independently investigated in [7, 8]. It was shown that the properties of the ground state
were such that for special values of the coupling constant, conformal anomalies of minimal
unitary theories were obtained. In addition, this Hamiltonian implied boundary conditions
which depended on the coupling constant (or quantum group parameterq) and quantum
numbers of the sector. This second property made this Hamiltonian different from the XXZ
chain with the toroidal boundary condition where the twist was common to all sectors of
a given Hamiltonian [9–12]. In this paper we proceed with this investigation and show
that it is possible to project from the closed quantum chain partition functions of statistical
models corresponding to minimal unitary theories. In the finite-size scaling limit, we obtain
the spectra and the operator content of these theories. For finite chains, the spectra of these
models can be related to the starting quantum chain. Like the original XXZ chain, the
projected systems also have sector-dependent boundary conditions. In our derivation we try
to exploit the theory of representations of quantum groups [1, 14, 15] and the division of all
states into ‘good’ and ‘bad’. Keeping only ‘good’ states will lead to unitary theories.
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‡ E-mail: pprester@phy.hr

0305-4470/96/061187+13$19.50c© 1996 IOP Publishing Ltd 1187
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2. Statistical systems and the quantum chain

We start with the Hamiltonian for the closedSU(2)q invariant chain [5, 7]

H = Lq −
L−1∑
i=1

Ri − R0 (1)

R0 = GRL−1G
−1 (2)

G = R1 · · ·RL−1 (3)

whereRi are 4× 4 matrices

Ri = σ+
i σ−

i+1 + σ−
i σ+

i+1 + q + q−1

4
(σ 3

i σ 3
i+1 + 1) − q − q−1

4
(σ 3

i − σ 3
i+1 − 2). (4)

We choose the quantum group parameterq to be on the unit circle

q = eiϕ (5)

q + q−1

2
= cosϕ = − cosγ.

The Hamiltonian is invariant to generators of the quantum group

S3 = 1
2

L∑
i=1

σ 3
i (6)

S± =
L∑

i=1

q−σ 3/2 ⊗ · · · ⊗ q−σ 3/2 ⊗ σ±
i ⊗ qσ 3/2 ⊗ · · · ⊗ qσ 3/2.

The operatorG plays the role of the translation operator

GRiG
−1 = Ri+1 RL = R0 i = 1, . . . , L − 1 (7)

and also commutes with the Hamiltonian. We shall be interested in the cases in which the
quantum group parameter is a root of unity:

qn = ±1. (8)

We shall first study the generic irrational case. In this case, one can decompose the space
of states into the direct sum of irreducible representations of the quantum group which are
in one-to-one correspondence with the usualSU(2) representations. It is therefore sufficient
to treat the highest weight states. All other states can be obtained with the action of theS−

operator. We derived the Bethe ansatz (BA) equation in [7]. In this reference the energy
eigenvalues are given by

E = 2
M∑
i=1

(cosϕ − coski) M = L

2
− Q. (9)

HereQ is the eigenvalue ofS3 andki satisfy the BA constraints

Lki = 2πIi + 2ϕ(Q + 1) −
M∑

j=1
j 6=i

2(ki, kj ) ki 6= ϕ (10)

where Ii are integers (half-integers) ifM is odd (even), and2(ki, kj ) is the usual two-
particle phase defined in [7].
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It is important to notice that the BA functions9M(n1, . . . , nM) satisfy non-trivial
boundary conditions:

9M(n2, . . . , nM, n1 + L) = eiφ9M(n1, . . . , nM) (11)

where the numbersni denote the positions of down spins and

φ = 2ϕ(Q + 1). (12)

This means that quantum invariance implies a non-trivial boundary condition. This boundary
condition has two properties. It depends on the coupling constant

γ = π − ϕ (13)

and on the sector defined by the chargeQ.
Owing to the antisymmetry of phase shifts, from (10) it follows that

M∑
i=1

ki = 2π

L

M∑
i=1

Ii + 2M

L
ϕ(Q + 1). (14)

This allows us to determine the eigenvalues of the translation operatorG or equivalently of
the operatorP

P = i ln G. (15)

In fact,

P =
M∑
i=1

ki − ϕ

(
Q − 1 + L

2

)
= 2π

L

M∑
i=1

Ii + ϕ

[
−L

2
− Q + 1 + 2M

L
(Q + 1)

]
. (16)

It was also shown in [7] that the finite-size correction to the thermodynamic limit of
the ground-state energy was given by (L even)

E0(L) = E0(∞) − πc ζ

6L
+ O

(
1

L

)
(17)

where

ζ = π sinγ

γ
. (18)

The conformal anomalyc was found to be

c = 1 − 6(π − ϕ)2

πϕ
(19)

for ϕ ∈ [ π
2 , π ]. We are particularly interested in the values

ϕ = πm

m + 1
m = 3, 4, . . . (20)

because they give the conformal anomalies of the minimal unitary models:

c = 1 − 6

m(m + 1)
m = 3, 4, . . . . (21)

Now we define scaled gaps

En = L

2πζ
(En − E0) (22)

P n = L

2π
(Pn − P0 + ϕQ). (23)
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We introduce the partition function in some sectorQ > 0:

FQ(z, z, L) =
∑

all states

z
1
2 (En+P n)z

1
2 (En−P n). (24)

One can also introduce the partition functionKQ(z, z, L) for the highest-weight states in
the generic case with

KQ(z, z, L) =
∑

highest
weight states

z
1
2 (En+P n)z

1
2 (En−P n). (25)

The functionKQ can also be expressed as

KQ(z, z, L) = FQ(z, z, L) − FQ+1(z, z, L) 0 6 Q 6 L

2
. (26)

This relation can be inverted into

FQ(z, z, L) =
L/2∑
j=Q

Kj (z, z, L). (27)

The partition function for the particular case (8), whenq is a root of unity, can be obtained
by continuity from the generic case. It is known [1] that, in this case, some representations
will mix in higher dimensional representations (‘bad’ representations) which will contain
subrepresentations of zero norm. That could of course lead to problems with physical
interpretation. There will, however, still exist representations isomorphic to the usualSU(2)

representations with a non-vanishing norm (‘good’ representations). We can therefore expect
that the ‘good’ sector will lead us to interesting physical models. We therefore need an
expression for the partition functionDQ(z, z, L) for the highest-weight states from the
‘good’ sector†. This formula was derived by Pasquier and Saleur (relation (2.9) in [1])
in the context of the open quantum chain. However, their arguments are based purely on
group-theoretical grounds and can also be repeated here with the same result. Thus,

DQ(z, z, L) =
∑
r>0

(KQ+nr (z, z, L) − Kn−1−Q+nr (z, z, L)) 0 6 Q < 1
2(n − 1)

=
∑
r>0

KQ+nr (z, z, L) −
∑
r>0

K−Q−1+nr (z, z, L) (28)

where from (8) and (20) it follows thatn = m + 1. For later convenience, we transform
this formula into another form. We denote the generating function of lowest-weight states
by Kj for j < 0. Owing to the symmetries of the Hamiltonian we have

Kj (z, z, L) = K−j (z, z, L). (29)

Then (28) can be written as

DQ(z, z, L) =
∑
r>0

KQ+nr (z, z, L) −
∑
r<0

KQ+1+nr (z, z, L). (30)

Analogously to (26), we can expressK−|j |(z, z, L) as

K−|j |(z, z, L) = F−|j |(z, z, L) − F−|j |−1(z, z, L). (31)

Using (26) and (31) in (30) we obtain

DQ(z, z, L) =
∑
r>0

(FQ+nr (z, z, L) − FQ+1+nr (z, z, L))

† These states can also be characterized (relation (1.19) in [1]) by the condition that they belong to the kernel of
S+ and do not belong to the image of(S+)n−1.
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−
∑
r<0

(FQ+1+nr (z, z, L) − FQ+nr (z, z, L)). (32)

It is convenient to introduce the notation

GQ(z, z, L) =
∑
r∈Z

FQ+nr (z, z, L). (33)

With this notation, the generating function for the ‘good’ sector can be written as

DQ(z, z, L) = GQ(z, z, L) − GQ+1(z, z, L). (34)

We shall see thatDQ(z, z, L) will define the spectrum of a statistical model with non-
trivial boundary conditions (sector-dependent). The spectrum of this model is related to the
spectrum of our starting quantum chain with the help of (34). The same relation is true in
the finite-size scaling limit. In this case, however, we shall be able to determine explicit
formulae for the operator content of the resulting model.

3. Quantum chain and the XXZ chain with a toroidal boundary condition

Boundary conditions of the quantum chain are sector-dependent (equations (11) and (12)).
One can raise the natural question how the spectrum of the quantum chain is related to
the chains with toroidal boundary conditions. As indicated previously, we are particularly
interested in the ‘good’ part of the spectrum of the quantum chain. It turns out that the
answer to the above question enables us to use the results of [10, 11] on toroidal models.
They provide us with the necessary arguments to show, from relation (34), the results
anticipated at the end of the preceding section.

We remind the reader of the results for the toroidal case [10, 11]. The Hamiltonian is
defined by

H(q, φ) = −
L∑

i=1

{
σ+

i σ−
i+1 + σ−

i σ+
i+1 + q + q−1

4
(σ 3

i σ 3
i+1)

}
(35)

q + q−1

2
= cosϕ = − cosγ (36)

and

σ±
L+1 = e∓iφσ±

1 φ ∈ (−π, π ]. (37)

This Hamiltonian commutes with

Sz =
L∑

i=1

σ 3
i (38)

and with the translation operator

T = e−iφσ 3
1 /2P1P2 · · ·PL−1 (39)

wherePi , i = 1, . . . , L − 1 are permutation operators

Pi = σ+
i σ−

i+1 + σ−
i σ+

i+1 + 1
2(σ 3

i σ 3
i+1 + 1). (40)

The momentum operator is then

P = i ln T . (41)
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The BA constraints for this system are [9]

Lki = 2πIi + φ −
M∑

j=1
j 6=i

2(ki, kj ) i = 1, . . . , M (42)

and give

E = −L

2
cosϕ + 2

M∑
i=1

(cosϕ − coski) (43)

P =
M∑
i=1

ki = 2π

L

M∑
i=1

Ii + M

L
φ. (44)

We define

φ = 2πl − 1
2 < l 6 1

2. (45)

The finite-size scaling limit of this system is described by thec = 1 conformal field theory
of the compactified free-boson system with the compactification radius

R2 = 8h (46)

where

h = 1

4(1 − γ /π)
(47)

andh > 1
4.

Let us denote byEl
Q;j (L) andP l

Q;j (L) the eigenvalues ofH andP in the sectorSz = Q

with a boundary condition defined byφ = 2πl. Index j = 1, . . . ,
(

L

Q+L/2

)
enumerates

eigenvalues with the samel andQ (some of them can of course coincide). Then, following
[10, 11], we can write the expression for the finite-size scaling function ofHl

Q:

E l
Q(z, z) = lim

L→∞
E l

Q(z, z, L)

= lim
L→∞

( L

Q+L/2)∑
j=1

z
1
2 (E

l

Q;j (L)+P
l

Q;j (L))z
1
2 (E

l

Q;j (L)−P
l

Q;j (L)) (48)

=
∑
ν∈Z

z[Q+4h(l+ν)]2/16hz[Q−4h(l+ν)]2/16h
∞∏

n=1

(1 − zn)−1(1 − zn)−1.

The symbolsE
l

Q;j (L) andP
l

Q;j (L) denote the scaled gaps

E
l

Q;j (L) = L

2π
(El

Q;j (L) − E0
0;0(L))

P
l

Q;j (L) = L

2π
P l

Q;j (L).

It was shown [10, 11] that it was possible to project theories withc < 1 by choosing a
new ground state with energyEl0

0;j0
(L). The numberj0 > 1 was chosen in such a way that

the new ground state gave the contribution(zz)h(l0+ν0)
2

in the partition function (48). The
quantity(l0 + ν0) is related toh by the condition

c = 1 − 6

m(m + 1)
= 1 − 24h(l0 + ν0)

2 (49)
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where− 1
2 < l0 6 1

2 andν0 ∈ Z. From (49) it follows that

l0 + ν0 = [4hm(m + 1)]−
1
2 . (50)

Now new scaled gaps can be defined as

F
k

Q;j (L) = L

2π
(E

k(l0+ν0)

Q;j (L) − E
l0
0;j0

(L))

P
k

Q;j (L) = L

2π
P

k(l0+ν0)

Q;j (L).

The corresponding finite-size scaling partition function is

F k
Q(z, z) = lim

L→∞
F k

Q(z, z, L)

= lim
L→∞

( L
Q+L/2)∑

j=1

z
1
2 (F

k

Q;j (L)+P
k

Q;j (L)) z
1
2 (F

k

Q;j (L)−P
k

Q;j (L)). (51)

The relation (49) givesc as a function of two independent real parameters,h and l0 + ν0.
According to [10], two classes ofc < 1 models can be defined imposing the relation

l0 + ν0 = 1

M
− M

4h
. (52)

They are calledR models ifM > 0 (R = M) andL models ifM < 0 (L = −M). From
(49) and (52) it follows that

ϕ = πm

R2(m + 1)
R models (53)

ϕ = π(m + 1)

L2m
L models. (54)

Our goal is to evaluate (34) extracted from the quantum chain. We thus choose case (53)
with R = 1 which reproduces our equation (20). In this case,

l0 + ν0 = 1

m + 1
(55)

and the functionF k
Q(z, z, L) has the periodicity properties

F k
Q(z, z, L) = F k±n

Q (z, z, L) (56)

where the integern is given by

n = m + 1. (57)

Consider the functionGk
Q(z, z, L)

Gk
Q(z, z, L) =

∑
ν∈Z

F k
Q+νn(z, z, L) (58)

which satisfies

Gk
Q±n(z, z, L) = Gk±n

Q (z, z, L) = Gk
Q(z, z, L) = Gn−k

n−Q(z, z, L). (59)

We define also

Dk
Q(z, z, L) ≡ Gk

Q(z, z, L) − GQ
k (z, z, L) (60)

where

1 6 k 6 m |Q| 6 min{k − 1, m − k}. (61)
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From (48), (49) and (58) one obtains [10,11]

Dk
Q(z, z) ≡ lim

L→∞
Dk

Q(z, z, L)

=
m−1∑
r=1

χr,k−Q(z) χr,k+Q(z). (62)

The symbolsχr,s denote the character functions of irreducible representations of the Virasoro
algebra with highest weights1r,s given by

1r,s = [(m + 1)r − ms]2 − 1

4m(m + 1)
. (63)

The functionsF k
Q are partition functions of the toroidal chain with the boundary condition

φ = 2π
k

n
= 2π

k

m + 1
in the sectorSz = Q. (64)

On the other hand, we have seen that the quantum chain has boundary conditions given by

φ = 2ϕ(Q + 1) = 2π
m

m + 1
(Q + 1) (mod 2π). (65)

Comparing (64) with (65), one obtains

k = −(Q + 1) (mod n) = m − Q (mod n). (66)

The highest-weight states for the quantum chain in the sector of chargeQ satisfy the
same BA equations as the toroidal Hamiltonian with the boundary condition (65). As
a consequence, the energy and momenta of the states are simply related (as follows by
comparing (9) with (43), and (16) with (44)) by

E = E(toroidal) + L

2
cosϕ (67)

P = P(toroidal) − ϕ

(
Q − 1 + L

2

)
. (68)

Using (66) and (60) we obtain

Dm−Q
Q (z, z, L) = D−(Q+1)

Q (z, z, L) = G−(Q+1)
Q (z, z, L) − GQ

−(Q+1)(z, z, L). (69)

However, the relation (34) for the quantum chain, after using the symmetry property

GQ(z, z, L) = G−Q(z, z, L) (70)

has the same form as (69). Indeed, we know from [1] that formula (69) for the toroidal
Hamiltonian projects states which are in the kernel ofS+ and not in the image of(S+)n−1.
However, that was also the case with relation (34). In fact, the left-hand sides of these two
relations are both ‘good’ highest-weight states with the same charge and the same boundary
condition and satisfy the same BA equations. Adding the usual assumption that all ‘good’
highest-weight states are given by BA states, we conclude that the left-hand sides of (34)
and (69) are equal. In other words,

DQ(z, z, L) = Dm−Q
Q (z, z, L). (71)
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4. Unitary minimal models and the quantum chain

One result of the preceding section is the relation (71) which in combination with (62) leads
to

DQ(z, z) = lim
L→∞

DQ(z, z, L) =
m−1∑
r=1

χr,m−2Q(z) χr,m(z) (72)

0 6 Q <
m

2
. (73)

The right-hand side of (72) has the form of partition functions of physical systems [16, 17]
whereχr,s are denoted character functions of highest-weight representations of the Virasoro
algebra. The quantum parameterϕ determinesm:

ϕ = πm

m + 1
. (74)

Accordingly, the construction (72) gives the partition function of a system which consists
of a ‘good’ subset of states of the original quantum chain; this system has the conformal
anomaly

c = 1 − 6

m(m + 1)
m = 3, 4, . . . (75)

and the operator content can be read from (72) with the help of formula (63). Owing to
(75) this system belongs to the unitary series.

We present some simple examples.

4.1. m = 3

From (73) it follows thatQ = 0, 1.

D0(z, z) =
2∑

r=1

χr,3(z) χr,3(z) =
2∑

r=1

(1r,3, 1r,3)

= (0, 0) + ( 1
2, 1

2) (76)

D1(z, z) =
2∑

r=1

χr,1(z) χr,3(z) =
2∑

r=1

(1r,1, 1r,3)

= ( 1
2, 0) + (0, 1

2). (77)

We have used the usual notation

χr,s(z) χp,t (z) ≡ (1r,s, 1p,t ). (78)

These functions can be identified with the partition functions for given sectors of the Ising
chain. In fact, consider the Hamiltonian

H = − 1
2

L/2∑
j=1

(σ 3
j + σ 1

j σ 1
j+1) (79)

with the boundary conditions

σ 1
L
2 +1 = (−1)q̃σ 1

1 q̃ = 0, 1.

This Hamiltonian commutes with the operator6

6 = σ 3
1 · · · σ 3

L/2. (80)
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We useT q̃
q to denote the partition function for the boundary condition defined byq̃ and the

eigenvalue(−1)q of 6. Their conformal content was obtained in [18]. By comparison,

D0 = T 0
0 D1 = T 1

1 . (81)

Thus we see that, for example,T 1
0 andT 0

1 are not contained in this construction. It would
be interesting to construct a Hamiltonian containing just these sectors. In fact, this is a non-
local Hamiltonian already discussed in [7, 11] which we mention here for completeness:

H = − 1
2

{ L/2−1∑
j=1

(σ 3
j + σ 1

j σ 1
j+1) + σ 3

L/2 + σ 1
L/2σ

1
1 6

}
. (82)

4.2. m = 4

Again, Q = 0, 1.

D0 =
3∑

r=1

(1r,4, 1r,4)

= (0, 0) + ( 7
16,

7
16) + ( 3

2, 3
2)

D1 =
3∑

r=1

(1r,2, 1r,4)

= ( 3
5, 0) + ( 3

80,
7
16) + ( 1

10,
3
2).

4.3. m = 5

Q = 0, 1, 2.

D0 =
4∑

r=1

(1r,5, 1r,5)

= (0, 0) + ( 2
5, 2

5) + ( 7
5, 7

5) + (3, 3)

D1 =
4∑

r=1

(1r,3, 1r,5)

= ( 1
15,

2
5) + ( 2

3, 0) + ( 1
15,

7
5) + ( 2

3, 3) (83)

D2 =
4∑

r=1

(1r,1, 1r,5)

= (3, 0) + ( 7
5, 2

5) + ( 2
5, 7

5) + (0, 3).

These are partition functions of the three-state Potts model whose Hamiltonian is given by

H = − 2

3
√

3

N∑
j=1

(σj + σ
†
j + 0j0

†
j+1 + 0

†
j 0j+1) (84)

σ =
( 1 0 0

0 ω 0
0 0 ω2

)
0 =

( 0 0 1
1 0 0
0 1 0

)
ω = e2π i/3. (85)

We introduce the partition functionsT q̃
q corresponding to the boundary condition

0N+1 = ωq̃01 q = 0, 1, 2 (86)
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and the sectorq of the charge operator

M = σ1 · · · σN. (87)

Then, comparing (83) with the decomposition (2.37a) of [10], we obtain

D0 = T 0
0,+ D1 = T 2

1 = T 1
2 D2 = T 0

0,−. (88)

The functionsD0 and D2 have the same boundary condition and the chargeq, and the
notation+, − distinguishes between two one-dimensional representations ofS3 (see, e.g.
[10]). All other partition functions are forbidden in our model. In fact the Hamiltonian for
this case can be constructed as

H = − 2

3
√

3

{ N−1∑
j=1

(σj + σ
†
j + 0j0

†
j+1 + 0

†
j 0j+1) + σN + σ

†
N + 0N0

†
1M + 0

†
N01M

†
}

(89)

whereN = L/2. As expected, it is again non-local and implies sector-dependent boundary
conditions. We note that by making the replacementM → M† in (89), and after an obvious
adjustment of multiplicative and additive constants, we obtain the Hamiltonian from [7].
These two Hamiltonians have the same energy spectrum, but momenta of opposite sign and
thus a different operator content.

Thus, starting with the closed quantum chain, we have obtained the finite-size scaling
limit of the partition functions for definite statistical systems. The corresponding operator
content can be read from relation (72) given the deformation parameterq of the original
quantum chain.

This is a result we also obtain for finite chains. In this case the explicit character formula
is not available. However, we are still in a position to relate the spectra of the two theories
through the relation (34):

DQ(z, z, L) = GQ(z, z, L) − GQ+1(z, z, L). (90)

This relation for partition functions implies that the spectrum of our statistical system is
contained in the quantum chain and can be obtained from (90). We note that

GQ(z, z, L) =
∑
r∈Z

FQ+rn(z, z, L) (91)

whereFQ(z, z, L) is the partition function of the original system defined by (24).
For illustration, we present energies of the quantum chain with four sites form = 3.

The construction (90) and (91) (interpreted here as subtraction between two sets of energy
eigenvalues and union of sets, respectively) then gives us energies for the projected statistical
system. This system was previously identified as the Ising chain with two sites and with the
boundary conditions dependent on the sector and defined in (81). The set of energies of the
projected system is a subset of the set of energies of the original system and is underlined in
table 1. These energies are indeed also energies of the Ising chain (82), as can be checked
numerically. Our numbers are a subset of the numbers in table 3 in [10] for chains with
toroidal boundary conditions. We have to expect this since we have shown that the spectrum
of the quantum chain is contained in the union of spectra of toroidal Hamiltonians.

In table 2 we have illustrated some features for them = 5 case of the three-state Potts
model with two sites and sector-dependent boundary conditions. We remark that in both
cases the allowed boundary conditions are those permitted by the symmetry on duality
transformations [19]:

Hq̃
q = H

q

q̃

We shall consider this point elsewhere.
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Table 1. Scaled energy gaps defined by (22) for the quantum chain with four sites,m = 3. The
levels which are underlined correspond to the Ising model (82) with two sites.

G0 G1 G2

0.000 000 — —
0.450 158 0.450 158 —
0.450 158 0.450 158 —
0.900316 — —
1.086 778 1.086 778 1.086 778
1.086 778 1.086 778 1.086 778

Table 2. Scaled energy gaps defined by (22) for the quantum chain with four sites,m = 5. The
levels which are underlined correspond to the three-state Potts model (89) with two sites.

G0 G1 G2

0.000 000 — —
0.424 413 0.424 413 —
0.579 759 0.579 759 —
0.848 826 — —
1.004 172 1.004 172 —
1.159 518 1.159 518 1.159 518

Another interesting question concerns the properties of the model defined with (72) under
the modular group. Of course, due to the boundary properties of our model, we do not
expect invariance on the full modular group but eventually on a subgroup (compare [20, 21]).
Indeed, we can show that all functionsDQ are invariant on the modular transformationT m+1

(T (m+1)/2) for m even (odd) where

T =
(

1 1
0 1

)
.

This can be obtained by straightforward application of the property [17]

T [χr,s ] = e2π i(1r,s−c/24)χr,s

on the relation (72). We have checked form = 3, 4, 5 that all DQ are also invariant on
Um+1 where

U =
(

1 0
1 1

)
.

T m+1 andUm+1 generate the subgroup

0(m + 1) =
( ±1 0

0 ±1

)
(mod m + 1).

Let us elaborate further on a particular examplem = 5 (three-state Potts). In this case (m is
odd) we have invariance onU6 andT 3. Particular combinations ofDQ functions can have
higher invariances. So, for example,D0 + D2 andD1 are invariant onU3 and that means
on 0(3). Thus, for example, the partition functionZ for the non-local Potts Hamiltonian
(89) is given by

Z = D0 + 2D1 + D2

so it is invariant on0(3).
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5. Conclusion

We have treated the closed quantum invariant chain for the quantum parameterq = eiϕ ,
ϕ = πm/(m + 1), m = 3, 4, . . .. This model has the conformal anomaly [7]

c = 1 − 6

m(m + 1)
.

The Hamiltonian also has the property that it implies sector-dependent boundary conditions.
We have shown that from the partition function of this theory we can construct partition
functions of well defined statistical systems. In particular, the spectra of these are subsets
of the spectrum of the quantum chain and can be obtained using (34). These formulae have
been obtained using the theory of representations of quantum groups, keeping the ‘good’
states and omitting the ‘bad’ states.

We have shown how our construction is related to the well known projection mechanism
of statistical models from Hamiltonians with toroidal boundary conditions.

Finally, using this relation we have been able to obtain partition functions in the finite-
size scaling limit. This has enabled us to find the operator content of the systems constructed
from the quantum chain. These systems belong to the family of unitary minimal models.
These properties have been illustrated in a few particular cases (m = 3, 4, 5).

Acknowledgments

One of us (SP) would like to thank V Rittenberg for permanent interest and H Grosse and
P Martin for precious discussions.

References

[1] Pasquier V and Saleur H 1990Nucl. Phys.B 330 523
[2] Batchelor M T, Mezincescu L, Nepomechie R I and Rittenberg V 1990J. Phys. A: Math. Gen.23 L141
[3] Meljanac M, Milekovíc M and Pallua S 1991J. Phys. A: Math. Gen.24 581
[4] Batchelor M T and Kuniba A 1991J. Phys. A: Math. Gen.24 2599
[5] Martin P and Rittenberg V 1992Int. J. Nucl. Phys.A 7 Suppl 1B, 797
[6] Martin P P 1991Potts Models and Related Problems in Statistical Mechanics(Singapore: World Scientific)
[7] Grosse H, Pallua S, Prester P and Raschhofer E 1994J. Phys. A: Math. Gen.27 4761
[8] Karowski M and Zapletal A 1994Nucl. Phys.B 419 [FS] 567
[9] Alcaraz F C, Barber M N and Batchelor M N 1988 Ann. Phys.182 280

[10] Alcaraz F C, Grimm U and Rittenberg V 1989Nucl. Phys.B 316 735
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